Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
concat2(leaf, Y) -> Y
concat2(cons2(U, V), Y) -> cons2(U, concat2(V, Y))
lessleaves2(X, leaf) -> false
lessleaves2(leaf, cons2(W, Z)) -> true
lessleaves2(cons2(U, V), cons2(W, Z)) -> lessleaves2(concat2(U, V), concat2(W, Z))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
concat2(leaf, Y) -> Y
concat2(cons2(U, V), Y) -> cons2(U, concat2(V, Y))
lessleaves2(X, leaf) -> false
lessleaves2(leaf, cons2(W, Z)) -> true
lessleaves2(cons2(U, V), cons2(W, Z)) -> lessleaves2(concat2(U, V), concat2(W, Z))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
concat2(leaf, Y) -> Y
concat2(cons2(U, V), Y) -> cons2(U, concat2(V, Y))
lessleaves2(X, leaf) -> false
lessleaves2(leaf, cons2(W, Z)) -> true
lessleaves2(cons2(U, V), cons2(W, Z)) -> lessleaves2(concat2(U, V), concat2(W, Z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
lessleaves2(x0, leaf)
lessleaves2(leaf, cons2(x0, x1))
lessleaves2(cons2(x0, x1), cons2(x2, x3))
Q DP problem:
The TRS P consists of the following rules:
LESSLEAVES2(cons2(U, V), cons2(W, Z)) -> LESSLEAVES2(concat2(U, V), concat2(W, Z))
LESSLEAVES2(cons2(U, V), cons2(W, Z)) -> CONCAT2(W, Z)
LESSLEAVES2(cons2(U, V), cons2(W, Z)) -> CONCAT2(U, V)
CONCAT2(cons2(U, V), Y) -> CONCAT2(V, Y)
The TRS R consists of the following rules:
concat2(leaf, Y) -> Y
concat2(cons2(U, V), Y) -> cons2(U, concat2(V, Y))
lessleaves2(X, leaf) -> false
lessleaves2(leaf, cons2(W, Z)) -> true
lessleaves2(cons2(U, V), cons2(W, Z)) -> lessleaves2(concat2(U, V), concat2(W, Z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
lessleaves2(x0, leaf)
lessleaves2(leaf, cons2(x0, x1))
lessleaves2(cons2(x0, x1), cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
LESSLEAVES2(cons2(U, V), cons2(W, Z)) -> LESSLEAVES2(concat2(U, V), concat2(W, Z))
LESSLEAVES2(cons2(U, V), cons2(W, Z)) -> CONCAT2(W, Z)
LESSLEAVES2(cons2(U, V), cons2(W, Z)) -> CONCAT2(U, V)
CONCAT2(cons2(U, V), Y) -> CONCAT2(V, Y)
The TRS R consists of the following rules:
concat2(leaf, Y) -> Y
concat2(cons2(U, V), Y) -> cons2(U, concat2(V, Y))
lessleaves2(X, leaf) -> false
lessleaves2(leaf, cons2(W, Z)) -> true
lessleaves2(cons2(U, V), cons2(W, Z)) -> lessleaves2(concat2(U, V), concat2(W, Z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
lessleaves2(x0, leaf)
lessleaves2(leaf, cons2(x0, x1))
lessleaves2(cons2(x0, x1), cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 2 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONCAT2(cons2(U, V), Y) -> CONCAT2(V, Y)
The TRS R consists of the following rules:
concat2(leaf, Y) -> Y
concat2(cons2(U, V), Y) -> cons2(U, concat2(V, Y))
lessleaves2(X, leaf) -> false
lessleaves2(leaf, cons2(W, Z)) -> true
lessleaves2(cons2(U, V), cons2(W, Z)) -> lessleaves2(concat2(U, V), concat2(W, Z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
lessleaves2(x0, leaf)
lessleaves2(leaf, cons2(x0, x1))
lessleaves2(cons2(x0, x1), cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CONCAT2(cons2(U, V), Y) -> CONCAT2(V, Y)
Used argument filtering: CONCAT2(x1, x2) = x1
cons2(x1, x2) = cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
concat2(leaf, Y) -> Y
concat2(cons2(U, V), Y) -> cons2(U, concat2(V, Y))
lessleaves2(X, leaf) -> false
lessleaves2(leaf, cons2(W, Z)) -> true
lessleaves2(cons2(U, V), cons2(W, Z)) -> lessleaves2(concat2(U, V), concat2(W, Z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
lessleaves2(x0, leaf)
lessleaves2(leaf, cons2(x0, x1))
lessleaves2(cons2(x0, x1), cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LESSLEAVES2(cons2(U, V), cons2(W, Z)) -> LESSLEAVES2(concat2(U, V), concat2(W, Z))
The TRS R consists of the following rules:
concat2(leaf, Y) -> Y
concat2(cons2(U, V), Y) -> cons2(U, concat2(V, Y))
lessleaves2(X, leaf) -> false
lessleaves2(leaf, cons2(W, Z)) -> true
lessleaves2(cons2(U, V), cons2(W, Z)) -> lessleaves2(concat2(U, V), concat2(W, Z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
lessleaves2(x0, leaf)
lessleaves2(leaf, cons2(x0, x1))
lessleaves2(cons2(x0, x1), cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.